L1 scheme for solving an inverse problem subject to a fractional diffusion equation (2006.04291v2)
Abstract: This paper considers the temporal discretization of an inverse problem subject to a time fractional diffusion equation. Firstly, the convergence of the L1 scheme is established with an arbitrary sectorial operator of spectral angle $< \pi/2 $, that is the resolvent set of this operator contains $ {z\in\mathbb C\setminus{0}:\ |\operatorname{Arg} z|< \theta}$ for some $ \pi/2 < \theta < \pi $. The relationship between the time fractional order $\alpha \in (0, 1)$ and the constants in the error estimates is precisely characterized, revealing that the L1 scheme is robust as $ \alpha $ approaches $ 1 $. Then an inverse problem of a fractional diffusion equation is analyzed, and the convergence analysis of a temporal discretization of this inverse problem is given. Finally, numerical results are provided to confirm the theoretical results.