On certain Semigroups of Transformations that preserve a partition (2006.04242v2)
Abstract: Let $X$ be a nonempty set, and let $\mathcal{T}_X$ be the full transformation semigroup on $X$. For a partition $\mathcal{P} = {X_i \;|\; i\in I}$ of $X$, we consider the semigroup $T(X, \mathcal{P}) = {f\in \mathcal{T}_X\;|\; \forall X_i\;\exists X_j,\; X_i f \subseteq X_j}$, the subsemigroup $\Sigma(X, \mathcal{P}) = {f\in T(X, \mathcal{P})\;|\; Xf \cap X_i \neq \emptyset\; \forall X_i}$, and the group of units $S(X, \mathcal{P})$ of $T(X, \mathcal{P})$. In this paper, we first characterize the elements of $\Sigma(X, \mathcal{P})$. For a permutation $f$ of finite $X$, we next observe whether there exists a nontrivial partition $\mathcal{P}$ of $X$ such that $f\in S(X, \mathcal{P})$. We then characterize and enumerate the idempotents in the semigroup $\Sigma(X, \mathcal{P})$ for arbitrary and finite $X$, respectively. We also characterize the elements of $S(X, \mathcal{P})$. For finite $X$, we finally calculate the cardinality of $T(X, \mathcal{P})$, $\Sigma(X, \mathcal{P})$, and $S(X, \mathcal{P})$.