Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Medical Concept Normalization in User Generated Texts by Learning Target Concept Embeddings (2006.04014v1)

Published 7 Jun 2020 in cs.CL

Abstract: Medical concept normalization helps in discovering standard concepts in free-form text i.e., maps health-related mentions to standard concepts in a vocabulary. It is much beyond simple string matching and requires a deep semantic understanding of concept mentions. Recent research approach concept normalization as either text classification or text matching. The main drawback in existing a) text classification approaches is ignoring valuable target concepts information in learning input concept mention representation b) text matching approach is the need to separately generate target concept embeddings which is time and resource consuming. Our proposed model overcomes these drawbacks by jointly learning the representations of input concept mention and target concepts. First, it learns the input concept mention representation using RoBERTa. Second, it finds cosine similarity between embeddings of input concept mention and all the target concepts. Here, embeddings of target concepts are randomly initialized and then updated during training. Finally, the target concept with maximum cosine similarity is assigned to the input concept mention. Our model surpasses all the existing methods across three standard datasets by improving accuracy up to 2.31%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (9)

Summary

We haven't generated a summary for this paper yet.