Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure-preserving numerical methods for stochastic Poisson systems (2006.03880v1)

Published 6 Jun 2020 in math.NA and cs.NA

Abstract: We propose a class of numerical integration methods for stochastic Poisson systems (SPSs) of arbitrary dimensions. Based on the Darboux-Lie theorem, we transform the SPSs to their canonical form, the generalized stochastic Hamiltonian systems (SHSs), via canonical coordinate transformations found by solving certain PDEs defined by the Poisson brackets of the SPSs. An a-generating function approach with \alpha\in [0,1] is then used to create symplectic discretizations of the SHSs, which are then transformed back by the inverse coordinate transformation to numerical integrators for the SPSs. These integrators are proved to preserve both the Poisson structure and the Casimir functions of the SPSs. Applications to a three-dimensional stochastic rigid body system and a three-dimensional stochastic Lotka-Volterra system show efficiency of the proposed methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.