Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rate-adaptive model selection over a collection of black-box contextual bandit algorithms

Published 5 Jun 2020 in cs.LG and stat.ML | (2006.03632v1)

Abstract: We consider the model selection task in the stochastic contextual bandit setting. Suppose we are given a collection of base contextual bandit algorithms. We provide a master algorithm that combines them and achieves the same performance, up to constants, as the best base algorithm would, if it had been run on its own. Our approach only requires that each algorithm satisfy a high probability regret bound. Our procedure is very simple and essentially does the following: for a well chosen sequence of probabilities $(p_{t}){t\geq 1}$, at each round $t$, it either chooses at random which candidate to follow (with probability $p{t}$) or compares, at the same internal sample size for each candidate, the cumulative reward of each, and selects the one that wins the comparison (with probability $1-p_{t}$). To the best of our knowledge, our proposal is the first one to be rate-adaptive for a collection of general black-box contextual bandit algorithms: it achieves the same regret rate as the best candidate. We demonstrate the effectiveness of our method with simulation studies.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.