Papers
Topics
Authors
Recent
2000 character limit reached

Motivic Galois representations valued in Spin groups

Published 5 Jun 2020 in math.NT | (2006.03585v1)

Abstract: Let $m$ be an integer such that $m \geq 7$ and $m \equiv 0,1,7 \mod 8$. We construct strictly compatible systems of representations of $\Gamma_{\mathbb Q} \to \mathrm{Spin}_m(\overline{\mathbb Q}_l) \xrightarrow{\mathrm{spin}} \mathrm{GL}_N(\overline{\mathbb Q}_l)$ that is potentially automorphic and motivic. As an application, we prove instances of the inverse Galois problem for the $\mathbb F_p$--points of the spin groups. For odd $m$, we compare our examples with the work of A. Kret and S. W. Shin, which studies automorphic Galois representations valued in $\mathrm{Spin}_m$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.