Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using an interpretable Machine Learning approach to study the drivers of International Migration (2006.03560v1)

Published 5 Jun 2020 in physics.soc-ph and cs.LG

Abstract: Globally increasing migration pressures call for new modelling approaches in order to design effective policies. It is important to have not only efficient models to predict migration flows but also to understand how specific parameters influence these flows. In this paper, we propose an artificial neural network (ANN) to model international migration. Moreover, we use a technique for interpreting machine learning models, namely Partial Dependence Plots (PDP), to show that one can well study the effects of drivers behind international migration. We train and evaluate the model on a dataset containing annual international bilateral migration from $1960$ to $2010$ from $175$ origin countries to $33$ mainly OECD destinations, along with the main determinants as identified in the migration literature. The experiments carried out confirm that: 1) the ANN model is more efficient w.r.t. a traditional model, and 2) using PDP we are able to gain additional insights on the specific effects of the migration drivers. This approach provides much more information than only using the feature importance information used in previous works.

Citations (2)

Summary

We haven't generated a summary for this paper yet.