Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic Anomaly Detection for Machine Sounds based on Image Transfer Learning (2006.03429v2)

Published 5 Jun 2020 in eess.AS, cs.CV, cs.LG, and cs.SD

Abstract: In industrial applications, the early detection of malfunctioning factory machinery is crucial. In this paper, we consider acoustic malfunction detection via transfer learning. Contrary to the majority of current approaches which are based on deep autoencoders, we propose to extract features using neural networks that were pretrained on the task of image classification. We then use these features to train a variety of anomaly detection models and show that this improves results compared to convolutional autoencoders in recordings of four different factory machines in noisy environments. Moreover, we find that features extracted from ResNet based networks yield better results than those from AlexNet and Squeezenet. In our setting, Gaussian Mixture Models and One-Class Support Vector Machines achieve the best anomaly detection performance.

Citations (37)

Summary

We haven't generated a summary for this paper yet.