Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How individual behaviors drive inequality in online community sizes: an agent-based simulation (2006.03119v1)

Published 4 Jun 2020 in cs.CY and cs.SI

Abstract: Why are online community sizes so extremely unequal? Most answers to this question have pointed to general mathematical processes drawn from physics like cumulative advantage. These explanations provide little insight into specific social dynamics or decisions that individuals make when joining and leaving communities. In addition, explanations in terms of cumulative advantage do not draw from the enormous body of social computing research that studies individual behavior. Our work bridges this divide by testing whether two influential social mechanisms used to explain community joining can also explain the distribution of community sizes. Using agent-based simulations, we evaluate how well individual-level processes of social exposure and decisions based on individual expected benefits reproduce empirical community size data from Reddit. Our simulations contribute to social computing theory by providing evidence that both processes together---but neither alone---generate realistic distributions of community sizes. Our results also illustrate the potential value of agent-based simulation to online community researchers to both evaluate and bridge individual and group-level theories.

Citations (1)

Summary

We haven't generated a summary for this paper yet.