Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Speech-Translation with Knowledge Distillation: FBK@IWSLT2020 (2006.02965v1)

Published 4 Jun 2020 in cs.CL, cs.SD, and eess.AS

Abstract: This paper describes FBK's participation in the IWSLT 2020 offline speech translation (ST) task. The task evaluates systems' ability to translate English TED talks audio into German texts. The test talks are provided in two versions: one contains the data already segmented with automatic tools and the other is the raw data without any segmentation. Participants can decide whether to work on custom segmentation or not. We used the provided segmentation. Our system is an end-to-end model based on an adaptation of the Transformer for speech data. Its training process is the main focus of this paper and it is based on: i) transfer learning (ASR pretraining and knowledge distillation), ii) data augmentation (SpecAugment, time stretch and synthetic data), iii) combining synthetic and real data marked as different domains, and iv) multi-task learning using the CTC loss. Finally, after the training with word-level knowledge distillation is complete, our ST models are fine-tuned using label smoothed cross entropy. Our best model scored 29 BLEU on the MuST-C En-De test set, which is an excellent result compared to papers, and 23.7 BLEU on the same data segmented with VAD, showing the need for researching solutions addressing this specific data condition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Marco Gaido (47 papers)
  2. Mattia Antonino Di Gangi (11 papers)
  3. Matteo Negri (93 papers)
  4. Marco Turchi (51 papers)
Citations (52)