Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic behavior of orthogonal polynomials. Singular critical case (2006.02907v1)

Published 4 Jun 2020 in math.CA, math.FA, and math.SP

Abstract: Our goal is to find an asymptotic behavior as $n\to\infty$ of the orthogonal polynomials $P_{n}(z)$ defined by Jacobi recurrence coefficients $a_{n}$ (off-diagonal terms) and $ b_{n}$ (diagonal terms). We consider the case $a_{n}\to\infty$, $b_{n}\to\infty$ in such a way that $\sum a_{n}{-1}<\infty$ $($that is, the Carleman condition is violated$)$ and $\gamma_{n}:=2{-1}b_{n} (a_{n}a_{n-1}){-1/2} \to \gamma $ as $n\to\infty$. In the case $|\gamma | \neq 1$ asymptotic formulas for $P_{n}(z)$ are known; they depend crucially on the sign of $| \gamma |-1$. We study the critical case $| \gamma |=1$. The formulas obtained are qualitatively different in the cases $|\gamma_{n}| \to 1-0$ and $|\gamma_{n}| \to 1+0$. Another goal of the paper is to advocate an approach to a study of asymptotic behavior of $P_{n}(z)$ based on a close analogy of the Jacobi difference equations and differential equations of Schr\"odinger type.

Summary

We haven't generated a summary for this paper yet.