Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Decoding from Binary Measurements with Cardinality Constraint Least Squares (2006.02890v1)

Published 3 Jun 2020 in cs.IT and math.IT

Abstract: The main goal of 1-bit compressive sampling is to decode $n$ dimensional signals with sparsity level $s$ from $m$ binary measurements. This is a challenging task due to the presence of nonlinearity, noises and sign flips. In this paper, the cardinality constraint least square is proposed as a desired decoder. We prove that, up to a constant $c$, with high probability, the proposed decoder achieves a minimax estimation error as long as $m \geq \mathcal{O}( s\log n)$. Computationally, we utilize a generalized Newton algorithm (GNA) to solve the cardinality constraint minimization problem with the cost of solving a least squares problem with small size at each iteration. We prove that, with high probability, the $\ell_{\infty}$ norm of the estimation error between the output of GNA and the underlying target decays to $\mathcal{O}(\sqrt{\frac{\log n }{m}}) $ after at most $\mathcal{O}(\log s)$ iterations. Moreover, the underlying support can be recovered with high probability in $\mathcal{O}(\log s)$ steps provided that the target signal is detectable. Extensive numerical simulations and comparisons with state-of-the-art methods are presented to illustrate the robustness of our proposed decoder and the efficiency of the GNA algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.