Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shape derivatives for the penalty formulation of contact problems with Tresca friction (2006.02849v1)

Published 4 Jun 2020 in math.OC, cs.NA, and math.NA

Abstract: In this article, the shape optimization of a linear elastic body subject to frictional (Tresca) contact is investigated. Due to the projection operators involved in the formulation of the contact problem, the solution is not shape differentiable in general. Moreover, shape optimization of the contact zone requires the computation of the gap between the bodies in contact, as well as its shape derivative. Working with directional derivatives, sufficient conditions for shape differentiability are derived. %The problem is addressed in the general framework of two bodies with smooth boundaries. Then, some numerical results, obtained with a gradient descent algorithm based on those shape derivatives, are presented.

Citations (7)

Summary

We haven't generated a summary for this paper yet.