Papers
Topics
Authors
Recent
2000 character limit reached

Bias Dependent Variability of Low Frequency Noise in Single Layer Graphene FETs

Published 4 Jun 2020 in physics.app-ph and cond-mat.other | (2006.02743v1)

Abstract: Low-frequency noise (LFN) variability in graphene transistors (GFETs) is for the first time researched in this work. LFN from an adequate statistical sample of long-channel solution-gated single-layer GFETs is measured in a wide range of operating conditions while a physics-based analytical model is derived that accounts for the bias dependence of LFN variance with remarkable performance. It is theoretically proved and experimentally validated that LFN deviations in GFETs stem from physical mechanisms that generate LFN. Thus, carrier number DN due to trapping/detrapping process and mobility fluctuations Dm which are the main causes of LFN, define its variability likewise as its mean value. DN accounts for an M-shape of normalized LFN variance versus gate bias with a minimum at the charge neutrality point (CNP) as it was the case for normalized LFN mean value while Dm contributes only near the CNP for both variance and mean value. Trap statistical nature is experimentally shown to differ from classical Poisson distribution at silicon-oxide devices, and this is probably caused by electrolyte interface in GFETs under study. Overall, GFET technology development is still in a premature stage which might cause pivotal inconsistencies affecting the scaling laws in GFETs of the same process.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.