Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A machine learning approach to Bayesian parameter estimation (2006.02369v3)

Published 3 Jun 2020 in quant-ph

Abstract: Bayesian estimation is a powerful theoretical paradigm for the operation of quantum sensors. However, the Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its use to proof-of-principle experiments. In this theoretical study, we formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network's posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our machine-learning based procedure outperforms standard calibration methods. Thus, our work paves the way for Bayesian quantum sensors which can benefit from efficient optimization methods, such as in adaptive schemes, and take advantage of complex non-classical states. These capabilities can significantly enhance the sensitivity of future devices.

Citations (41)

Summary

We haven't generated a summary for this paper yet.