Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Regression in Multidimensions: Suboptimality of Least Squares Estimators (2006.02044v2)

Published 3 Jun 2020 in math.ST, stat.ML, and stat.TH

Abstract: Under the usual nonparametric regression model with Gaussian errors, Least Squares Estimators (LSEs) over natural subclasses of convex functions are shown to be suboptimal for estimating a $d$-dimensional convex function in squared error loss when the dimension $d$ is 5 or larger. The specific function classes considered include: (i) bounded convex functions supported on a polytope (in random design), (ii) Lipschitz convex functions supported on any convex domain (in random design), (iii) convex functions supported on a polytope (in fixed design). For each of these classes, the risk of the LSE is proved to be of the order $n{-2/d}$ (up to logarithmic factors) while the minimax risk is $n{-4/(d+4)}$, when $d \ge 5$. In addition, the first rate of convergence results (worst case and adaptive) for the unrestricted convex LSE are established in fixed-design for polytopal domains for all $d \geq 1$. Some new metric entropy results for convex functions are also proved which are of independent interest.

Citations (14)

Summary

We haven't generated a summary for this paper yet.