Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Schrödinger-type operators: the case of potentials with local singularities (2006.01821v1)

Published 2 Jun 2020 in math.SP

Abstract: The goal of this paper is twofold. We prove that the operator $H=L+V$ , a perturbation of the Taibleson-Vladimirov multiplier $L=\mathfrak{D}{\alpha}$ by a potential $V(x)=b\left\Vert x\right\Vert {-\alpha},$ $b\geq b_{\ast},$ is essentially self-adjoint and non-negative definite (the critical value $b_{\ast}$ depends on $\alpha$ and will be specified later). While the operator $H$ is non-negative definite the potential $V(x)$ may well take negative values, e.g. $b_{\ast}<0$ for all $0<\alpha<1$. The equation $Hu=v$ admiits a Green function $g_{H}(x,y)$, the integral kernel of the operator $H{-1}$. We obtain sharp lower- and upper bounds on the ratio of the functions $g_{H}(x,y)$ and $g_{L}(x,y)$. Examples illustrate our exposition.

Summary

We haven't generated a summary for this paper yet.