Computing spectral measures of self-adjoint operators (2006.01766v2)
Abstract: Using the resolvent operator, we develop an algorithm for computing smoothed approximations of spectral measures associated with self-adjoint operators. The algorithm can achieve arbitrarily high-orders of convergence in terms of a smoothing parameter for computing spectral measures of general differential, integral, and lattice operators. Explicit pointwise and $Lp$-error bounds are derived in terms of the local regularity of the measure. We provide numerical examples, including a partial differential operator, a magnetic tight-binding model of graphene, and compute one thousand eigenvalues of a Dirac operator to near machine precision without spectral pollution. The algorithm is publicly available in $\texttt{SpecSolve}$, which is a software package written in MATLAB.