Extinction behaviour for the fast diffusion equations with critical exponent and Dirichlet boundary conditions (2006.01308v1)
Abstract: For a smooth bounded domain $\Omega\subseteq\mathbb{R}n$, $n\geq 3$, we consider the fast diffusion equation with critical sobolev exponent $$\frac{\partial w}{\partial\tau} =\Delta w{\frac{n-2}{n+2}}$$ under Dirichlet boundary condition $w(\cdot, \tau) = 0$ on $\partial\Omega$. Using the parabolic gluing method, we prove existence of an initial data $w_0$ such that the corresponding solution has extinction rate of the form $$|w(\cdot, \tau)|_{L\infty(\Omega)} = \gamma_0(T-\tau){\frac{n+2}{4}}\left|\ln(T-\tau)\right|{\frac{n+2}{2(n-2)}}(1+o(1))$$ as $t\to T-$, here $T > 0$ is the finite extinction time of $w(x, \tau)$. This generalizes and provides rigorous proof of a result of Galaktionov and King \cite{galaktionov2001fast} for the radially symmetric case $\Omega =B_1(0) : = {x\in \mathbb{R}n||x| < 1}\subset\mathbb{R}n$.