Tonal harmony and the topology of dynamical score networks (2006.01033v2)
Abstract: We introduce the concept of dynamical score networks for the representation and analysis of tonal compositions: a score is interpreted as a dynamical network where every chord is a node and each progression links successive chords. This network can be viewed as a time series of a non-stationary signal, and as such, it can be partitioned for the automatic identification of tonal regions using time series analysis and change point detection without relying on comparisons with pre-determined reference sets or extensive corpora. We demonstrate that the essential features of tonal harmony, centricity, referentiality, directedness and hierarchy, emerge naturally from the network topology and its scale-free properties. Finally, solving for the minimal length path through a route optimization algorithm on these graphs provides an abstraction of harmonic sequences that can be generalized for the conception of generative models of tonal compositional design.