Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Go viral or go broadcast? Characterizing the virality and growth of cascades (2006.01027v3)

Published 1 Jun 2020 in physics.soc-ph and cs.SI

Abstract: Quantifying the virality of cascades is an important question across disciplines such as the transmission of disease, the spread of information and the diffusion of innovations. An appropriate virality metric should be able to disambiguate between a shallow, broadcast-like diffusion process and a deep, multi-generational branching process. Although several valuable works have been dedicated to this field, most of them fail to take the position of the diffusion source into consideration, which makes them fall into the trap of graph isomorphism and would result in imprecise estimation of cascade virality inevitably under certain circumstances. In this paper, we propose a root-aware approach to quantifying the virality of cascades with proper consideration of the root node in a diffusion tree. With applications on synthetic and empirical cascades, we show the properties and potential utility of the proposed virality measure. Based on preferential attachment mechanisms, we further introduce a model to mimic the growth of cascades. The proposed model enables the interpolation between broadcast and viral spreading during the growth of cascades. Through numerical simulations, we demonstrate the effectiveness of the proposed model in characterizing the virality of growing cascades. Our work contributes to the understanding of cascade virality and growth, and could offer practical implications in a range of policy domains including viral marketing, infectious disease and information diffusion.

Citations (5)

Summary

We haven't generated a summary for this paper yet.