Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Domain Learning with Dynamic Residual Adapters (2006.00996v1)

Published 1 Jun 2020 in cs.LG and stat.ML

Abstract: A practical shortcoming of deep neural networks is their specialization to a single task and domain. While recent techniques in domain adaptation and multi-domain learning enable the learning of more domain-agnostic features, their success relies on the presence of domain labels, typically requiring manual annotation and careful curation of datasets. Here we focus on a less explored, but more realistic case: learning from data from multiple domains, without access to domain annotations. In this scenario, standard model training leads to the overfitting of large domains, while disregarding smaller ones. We address this limitation via dynamic residual adapters, an adaptive gating mechanism that helps account for latent domains, coupled with an augmentation strategy inspired by recent style transfer techniques. Our proposed approach is examined on image classification tasks containing multiple latent domains, and we showcase its ability to obtain robust performance across these. Dynamic residual adapters significantly outperform off-the-shelf networks with much larger capacity, and can be incorporated seamlessly with existing architectures in an end-to-end manner.

Citations (8)

Summary

We haven't generated a summary for this paper yet.