Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Differentially Private (Contextual) Bandits Learning (2006.00701v4)

Published 1 Jun 2020 in cs.LG and stat.ML

Abstract: We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(\varepsilon, \delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $\tilde{O}(T{3/4}/\varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $\Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Kai Zheng (134 papers)
  2. Tianle Cai (34 papers)
  3. Weiran Huang (54 papers)
  4. Zhenguo Li (195 papers)
  5. Liwei Wang (240 papers)
Citations (55)

Summary

We haven't generated a summary for this paper yet.