Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chromatic symmetric functions from the modular law (2006.00657v2)

Published 1 Jun 2020 in math.CO

Abstract: In this article we show how to compute the chromatic quasisymmetric function of indifference graphs from the modular law introduced by Guay-Paquet. We provide an algorithm which works for any function that satisfies this law, such as unicellular LLT polynomials. When the indifference graph has bipartite complement it reduces to a planar network, in this case, we prove that the coefficients of the chromatic quasisymmetric function in the elementary basis are positive unimodal polynomials and characterize them as certain $q$-hit numbers (up to a factor). Finally, we discuss the logarithmic concavity of the coefficients of the chromatic quasisymmetric function.

Summary

We haven't generated a summary for this paper yet.