Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sea-ice dynamics on triangular grids (2006.00547v3)

Published 31 May 2020 in math.NA and cs.NA

Abstract: We present a stable discretization of sea-ice dynamics on triangular grids that can straightforwardly be coupled to an ocean model on a triangular grid with Arakawa C-type staggering. The approach is based on a nonconforming finite element framework, namely the Crouzeix-Raviart finite element. As the discretization of the viscous-plastic and elastic-viscous-plastic stress tensor with the Crouzeix-Raviart finite element produces oscillations in the velocity field, we introduce an edge-based stabilization. To show that the stabilized Crouzeix-Raviart approximation is qualitative consistent with the solution of the continuous sea-ice equations, we derive a $H1$-estimate. In a numerical analysis we show that the stabilization is fundamental to achieve stable approximation of the sea-ice velocity field.

Citations (23)

Summary

We haven't generated a summary for this paper yet.