Relative primeness and Borel partition properties for equivalence relations
Abstract: We introduce a notion of relative primeness for equivalence relations, strengthening the notion of non-reducibility, and show for many standard benchmark equivalence relations that non-reducibility may be strengthened to relative primeness. We introduce several analogues of cardinal properties for Borel equivalence relations, including the notion of a prime equivalence relation and Borel partition properties on quotient spaces. In particular, we introduce a notion of Borel weak compactness, and characterize partition properties for the equivalence relations ${\mathbb F}_2$ and ${\mathbb E}_1$. We also discuss dichotomies related to primeness, and see that many natural questions related to Borel reducibility of equivalence relations may be viewed in the framework of relative primeness and Borel partition properties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.