Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-orthonormal Encoding for Machine Learning Applications (2006.00038v1)

Published 29 May 2020 in cs.LG and stat.ML

Abstract: Most machine learning models, especially artificial neural networks, require numerical, not categorical data. We briefly describe the advantages and disadvantages of common encoding schemes. For example, one-hot encoding is commonly used for attributes with a few unrelated categories and word embeddings for attributes with many related categories (e.g., words). Neither is suitable for encoding attributes with many unrelated categories, such as diagnosis codes in healthcare applications. Application of one-hot encoding for diagnosis codes, for example, can result in extremely high dimensionality with low sample size problems or artificially induce machine learning artifacts, not to mention the explosion of computing resources needed. Quasi-orthonormal encoding (QOE) fills the gap. We briefly show how QOE compares to one-hot encoding. We provide example code of how to implement QOE using popular ML libraries such as Tensorflow and PyTorch and a demonstration of QOE to MNIST handwriting samples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.