Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online DR-Submodular Maximization with Stochastic Cumulative Constraints (2005.14708v3)

Published 29 May 2020 in math.OC, cs.LG, and stat.ML

Abstract: In this paper, we consider online continuous DR-submodular maximization with linear stochastic long-term constraints. Compared to the prior work on online submodular maximization, our setting introduces the extra complication of stochastic linear constraint functions that are i.i.d. generated at each round. To be precise, at step $t\in{1,\dots,T}$, a DR-submodular utility function $f_t(\cdot)$ and a constraint vector $p_t$, i.i.d. generated from an unknown distribution with mean $p$, are revealed after committing to an action $x_t$ and we aim to maximize the overall utility while the expected cumulative resource consumption $\sum_{t=1}T \langle p,x_t\rangle$ is below a fixed budget $B_T$. Stochastic long-term constraints arise naturally in applications where there is a limited budget or resource available and resource consumption at each step is governed by stochastically time-varying environments. We propose the Online Lagrangian Frank-Wolfe (OLFW) algorithm to solve this class of online problems. We analyze the performance of the OLFW algorithm and we obtain sub-linear regret bounds as well as sub-linear cumulative constraint violation bounds, both in expectation and with high probability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Prasanna Sanjay Raut (1 paper)
  2. Omid Sadeghi (8 papers)
  3. Maryam Fazel (67 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.