Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite Dimensional Pathwise Volterra Processes Driven by Gaussian Noise -- Probabilistic Properties and Applications (2005.14460v1)

Published 29 May 2020 in math.PR

Abstract: We investigate the probabilistic and analytic properties of Volterra processes constructed as pathwise integrals of deterministic kernels with respect to the H\"older continuous trajectories of Hilbert-valued Gaussian processes. To this end, we extend the Volterra sewing lemma from \cite{HarangTindel} to the two dimensional case, in order to construct two dimensional operator-valued Volterra integrals of Young type. We prove that the covariance operator associated to infinite dimensional Volterra processes can be represented by such a two dimensional integral, which extends the current notion of representation for such covariance operators. We then discuss a series of applications of these results, including the construction of a rough path associated to a Volterra process driven by Gaussian noise with possibly irregular covariance structures, as well as a description of the irregular covariance structure arising from Gaussian processes time-shifted along irregular trajectories. Furthermore, we consider an infinite dimensional fractional Ornstein-Uhlenbeck process driven by Gaussian noise, which can be seen as an extension of the volatility model proposed by Rosenbaum et al. in \cite{ElEuchRosenbaum}.

Summary

We haven't generated a summary for this paper yet.