Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FCN+RL: A Fully Convolutional Network followed by Refinement Layers to Offline Handwritten Signature Segmentation (2005.14229v1)

Published 28 May 2020 in cs.CV

Abstract: Although secular, handwritten signature is one of the most reliable biometric methods used by most countries. In the last ten years, the application of technology for verification of handwritten signatures has evolved strongly, including forensic aspects. Some factors, such as the complexity of the background and the small size of the region of interest - signature pixels - increase the difficulty of the targeting task. Other factors that make it challenging are the various variations present in handwritten signatures such as location, type of ink, color and type of pen, and the type of stroke. In this work, we propose an approach to locate and extract the pixels of handwritten signatures on identification documents, without any prior information on the location of the signatures. The technique used is based on a fully convolutional encoder-decoder network combined with a block of refinement layers for the alpha channel of the predicted image. The experimental results demonstrate that the technique outputs a clean signature with higher fidelity in the lines than the traditional approaches and preservation of the pertinent characteristics to the signer's spelling. To evaluate the quality of our proposal, we use the following image similarity metrics: SSIM, SIFT, and Dice Coefficient. The qualitative and quantitative results show a significant improvement in comparison with the baseline system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (6)

Summary

We haven't generated a summary for this paper yet.