Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Ramp Metering Approach Based on Machine Learning and Historical Data (2005.13992v1)

Published 26 May 2020 in eess.SY, cs.LG, cs.SY, eess.SP, and stat.ML

Abstract: The random nature of traffic conditions on freeways can cause excessive congestions and irregularities in the traffic flow. Ramp metering is a proven effective method to maintain freeway efficiency under various traffic conditions. Creating a reliable and practical ramp metering algorithm that considers both critical traffic measures and historical data is still a challenging problem. In this study we use machine learning approaches to develop a novel real-time prediction model for ramp metering. We evaluate the potentials of our approach in providing promising results by comparing it with a baseline traffic-responsive ramp metering algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.