Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Knowledge Integration By Gradient Matching For Sample-Efficient Reinforcement Learning (2005.13778v1)

Published 28 May 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Model-free deep reinforcement learning (RL) agents can learn an effective policy directly from repeated interactions with a black-box environment. However in practice, the algorithms often require large amounts of training experience to learn and generalize well. In addition, classic model-free learning ignores the domain information contained in the state transition tuples. Model-based RL, on the other hand, attempts to learn a model of the environment from experience and is substantially more sample efficient, but suffers from significantly large asymptotic bias owing to the imperfect dynamics model. In this paper, we propose a gradient matching algorithm to improve sample efficiency by utilizing target slope information from the dynamics predictor to aid the model-free learner. We demonstrate this by presenting a technique for matching the gradient information from the model-based learner with the model-free component in an abstract low-dimensional space and validate the proposed technique through experimental results that demonstrate the efficacy of this approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Parth Chadha (3 papers)