Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Insertion-Based Modeling for End-to-End Automatic Speech Recognition (2005.13211v2)

Published 27 May 2020 in eess.AS and cs.SD

Abstract: End-to-end (E2E) models have gained attention in the research field of automatic speech recognition (ASR). Many E2E models proposed so far assume left-to-right autoregressive generation of an output token sequence except for connectionist temporal classification (CTC) and its variants. However, left-to-right decoding cannot consider the future output context, and it is not always optimal for ASR. One of the non-left-to-right models is known as non-autoregressive Transformer (NAT) and has been intensively investigated in the area of neural machine translation (NMT) research. One NAT model, mask-predict, has been applied to ASR but the model needs some heuristics or additional component to estimate the length of the output token sequence. This paper proposes to apply another type of NAT called insertion-based models, that were originally proposed for NMT, to ASR tasks. Insertion-based models solve the above mask-predict issues and can generate an arbitrary generation order of an output sequence. In addition, we introduce a new formulation of joint training of the insertion-based models and CTC. This formulation reinforces CTC by making it dependent on insertion-based token generation in a non-autoregressive manner. We conducted experiments on three public benchmarks and achieved competitive performance to strong autoregressive Transformer with a similar decoding condition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuya Fujita (16 papers)
  2. Shinji Watanabe (416 papers)
  3. Motoi Omachi (5 papers)
  4. Xuankai Chan (1 paper)
Citations (31)