Papers
Topics
Authors
Recent
Search
2000 character limit reached

A transmission problem for the Timoshenko system with one local Kelvin-Voigt damping and non-smooth coefficient at the interface

Published 24 May 2020 in math.AP | (2005.12756v1)

Abstract: In this paper, we study the indirect stability of Timoshenko system with local or global Kelvin-Voigt damping, under fully Dirichlet or mixed boundary conditions. Unlike the results of H. L. Zhao, K. S. Liu, and C. G. Zhang and of X. Tian and Q. Zhang, in this paper, we consider the Timoshenko system with only one locally or globally distributed Kelvin-Voigt damping. Indeed, we prove that the energy of the system decays polynomially and that the obtained decay rate is in some sense optimal. The method is based on the frequency domain approach combining with multiplier method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.