Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Inherent Noise in Gradient Based Methods (2005.12743v1)

Published 26 May 2020 in cs.LG and stat.ML

Abstract: Previous work has examined the ability of larger capacity neural networks to generalize better than smaller ones, even without explicit regularizers, by analyzing gradient based algorithms such as GD and SGD. The presence of noise and its effect on robustness to parameter perturbations has been linked to generalization. We examine a property of GD and SGD, namely that instead of iterating through all scalar weights in the network and updating them one by one, GD (and SGD) updates all the parameters at the same time. As a result, each parameter $wi$ calculates its partial derivative at the stale parameter $\mathbf{w_t}$, but then suffers loss $\hat{L}(\mathbf{w_{t+1}})$. We show that this causes noise to be introduced into the optimization. We find that this noise penalizes models that are sensitive to perturbations in the weights. We find that penalties are most pronounced for batches that are currently being used to update, and are higher for larger models.

Summary

We haven't generated a summary for this paper yet.