Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Optimal DNN Architecture for End-to-End Beamformers Based on Time-frequency References (2005.12683v2)

Published 23 May 2020 in eess.AS and cs.SD

Abstract: Acoustic beamformers have been widely used to enhance audio signals. Currently, the best methods are the deep neural network (DNN)-powered variants of the generalized eigenvalue and minimum-variance distortionless response beamformers and the DNN-based filter-estimation methods that are used to directly compute beamforming filters. Both approaches are effective; however, they have blind spots in their generalizability. Therefore, we propose a novel approach for combining these two methods into a single framework that attempts to exploit the best features of both. The resulting model, called the W-Net beamformer, includes two components; the first computes time-frequency references that the second uses to estimate beamforming filters. The results on data that include a wide variety of room and noise conditions, including static and mobile noise sources, show that the proposed beamformer outperforms other methods on all tested evaluation metrics, which signifies that the proposed architecture allows for effective computation of the beamforming filters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuichiro Koyama (18 papers)
  2. Bhiksha Raj (180 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.