Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation under matrix quadratic loss and matrix superharmonicity (2005.12479v3)

Published 26 May 2020 in math.ST and stat.TH

Abstract: We investigate estimation of a normal mean matrix under the matrix quadratic loss. Improved estimation under the matrix quadratic loss implies improved estimation of any linear combination of the columns. First, an unbiased estimate of risk is derived and the Efron--Morris estimator is shown to be minimax. Next, a notion of \textit{matrix superharmonicity} for matrix-variate functions is introduced and shown to have analogous properties with usual superharmonic functions, which may be of independent interest. Then, we show that the generalized Bayes estimator with respect to a matrix superharmonic prior is minimax. We also provide a class of matrix superharmonic priors that includes the previously proposed generalization of Stein's prior. Numerical results demonstrate that matrix superharmonic priors work well for low rank matrices.

Summary

We haven't generated a summary for this paper yet.