Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Visual Attention: Deep Rare Features (2005.12073v1)

Published 25 May 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Human visual system is modeled in engineering field providing feature-engineered methods which detect contrasted/surprising/unusual data into images. This data is "interesting" for humans and leads to numerous applications. Deep learning (DNNs) drastically improved the algorithms efficiency on the main benchmark datasets. However, DNN-based models are counter-intuitive: surprising or unusual data is by definition difficult to learn because of its low occurrence probability. In reality, DNNs models mainly learn top-down features such as faces, text, people, or animals which usually attract human attention, but they have low efficiency in extracting surprising or unusual data in the images. In this paper, we propose a model called DeepRare2019 (DR) which uses the power of DNNs feature extraction and the genericity of feature-engineered algorithms. DR 1) does not need any training, 2) it takes less than a second per image on CPU only and 3) our tests on three very different eye-tracking datasets show that DR is generic and is always in the top-3 models on all datasets and metrics while no other model exhibits such a regularity and genericity. DeepRare2019 code can be found at https://github.com/numediart/VisualAttention-RareFamily

Citations (2)

Summary

We haven't generated a summary for this paper yet.