Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep learning approach to describe and classify fungi microscopic images (2005.11772v1)

Published 24 May 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Preliminary diagnosis of fungal infections can rely on microscopic examination. However, in many cases, it does not allow unambiguous identification of the species by microbiologist due to their visual similarity. Therefore, it is usually necessary to use additional biochemical tests. That involves additional costs and extends the identification process up to 10 days. Such a delay in the implementation of targeted therapy may be grave in consequence as the mortality rate for immunosuppressed patients is high. In this paper, we apply a machine learning approach based on deep neural networks and Fisher Vector (advanced bag-of-words method) to classify microscopic images of various fungi species. Our approach has the potential to make the last stage of biochemical identification redundant, shortening the identification process by 2-3 days, and reducing the cost of the diagnosis.

Citations (57)

Summary

We haven't generated a summary for this paper yet.