Papers
Topics
Authors
Recent
Search
2000 character limit reached

Creating Semiflows on Simplicial Complexes from Combinatorial Vector Fields

Published 24 May 2020 in math.DS | (2005.11647v2)

Abstract: Combinatorial vector fields on simplicial complexes as introduced by Robin Forman have found numerous and varied applications in recent years. Yet, their relationship to classical dynamical systems has been less clear. In recent work it was shown that for every combinatorial vector field on a finite simplicial complex one can construct a multivalued discrete-time dynamical system on the underlying polytope X which exhibits the same dynamics as the combinatorial flow in the sense of Conley index theory. However, Forman's original description of combinatorial flows appears to have been motivated more directly by the concept of flows, i.e., continuous-time dynamical systems. In this paper, it is shown that one can construct a semiflow on X which exhibits the same dynamics as the underlying combinatorial vector field. The equivalence of the dynamical behavior is established in the sense of Conley-Morse graphs and uses a tiling of the topological space X which makes it possible to directly construct isolating blocks for all involved isolated invariant sets based purely on the combinatorial information.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.