Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Geometric Disentanglement for Surfaces via CFAN-VAE (2005.11622v2)

Published 23 May 2020 in cs.CV, cs.CG, cs.GR, cs.LG, and stat.ML

Abstract: Geometric disentanglement, the separation of latent codes for intrinsic (i.e. identity) and extrinsic(i.e. pose) geometry, is a prominent task for generative models of non-Euclidean data such as 3D deformable models. It provides greater interpretability of the latent space, and leads to more control in generation. This work introduces a mesh feature, the conformal factor and normal feature (CFAN),for use in mesh convolutional autoencoders. We further propose CFAN-VAE, a novel architecture that disentangles identity and pose using the CFAN feature. Requiring no label information on the identity or pose during training, CFAN-VAE achieves geometric disentanglement in an unsupervisedway. Our comprehensive experiments, including reconstruction, interpolation, generation, and identity/pose transfer, demonstrate CFAN-VAE achieves state-of-the-art performance on unsupervised geometric disentanglement. We also successfully detect a level of geometric disentanglement in mesh convolutional autoencoders that encode xyz-coordinates directly by registering its latent space to that of CFAN-VAE.

Citations (9)

Summary

We haven't generated a summary for this paper yet.