Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Keller-Segel system with logistic growth and signal-dependent motility (2005.11462v1)

Published 23 May 2020 in math.AP

Abstract: The paper is concerned with the following chemotaxis system with nonlinear motility functions \begin{equation}\label{0-1}\tag{$\ast$} \begin{cases} u_t=\nabla \cdot (\gamma(v)\nabla u- u\chi(v)\nabla v)+\mu u(1-u), &x\in \Omega, ~~t>0, 0=\Delta v+ u-v,& x\in \Omega, ~~t>0,\ u(x,0)=u_0(x), & x\in \Omega, \end{cases} \end{equation} with homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset \R2$ with smooth boundary, where the motility functions $\gamma(v)$ and $\chi(v)$ satisfy the following conditions \begin{itemize} \item {\color{black}$(\gamma,\chi)\in [C2[0,\infty)]2$} with $\gamma(v)>0$ and {\color{black} $\frac{|\chi(v)|2}{\gamma(v)}$ is bounded for all $v\geq 0$.} %for all $v\geq 0$ and $\lim\limits_{v\to\infty}\frac{|\chi(v)|2}{\gamma(v)}$ exists. \end{itemize} By employing the method of energy estimates , we establish the existence of globally bounded solutions of \eqref{0-1} with $\mu>0$ for any $u_0 \in W{1, \infty}(\Omega)$. Then based on a Lyapunov function, we show that all solutions $(u,v)$ of \eqref{0-1} will exponentially converge to the unique constant steady state $(1,1)$ provided $\mu>\frac{K_0}{16}$ with $K_0=\max\limits_{0\leq v \leq \infty}\frac{|\chi(v)|2}{\gamma(v)}$.

Summary

We haven't generated a summary for this paper yet.