Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Introduction to Neural Architecture Search for Convolutional Networks (2005.11074v1)

Published 22 May 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Neural Architecture Search (NAS) is a research field concerned with utilizing optimization algorithms to design optimal neural network architectures. There are many approaches concerning the architectural search spaces, optimization algorithms, as well as candidate architecture evaluation methods. As the field is growing at a continuously increasing pace, it is difficult for a beginner to discern between major, as well as emerging directions the field has followed. In this work, we provide an introduction to the basic concepts of NAS for convolutional networks, along with the major advances in search spaces, algorithms and evaluation techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (24)

Summary

We haven't generated a summary for this paper yet.