Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Multiclass Classification and Dataset Construction via Heterogeneous Local Experts (2005.10848v3)

Published 21 May 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In the domains of dataset construction and crowdsourcing, a notable challenge is to aggregate labels from a heterogeneous set of labelers, each of whom is potentially an expert in some subset of tasks (and less reliable in others). To reduce costs of hiring human labelers or training automated labeling systems, it is of interest to minimize the number of labelers while ensuring the reliability of the resulting dataset. We model this as the problem of performing $K$-class classification using the predictions of smaller classifiers, each trained on a subset of $[K]$, and derive bounds on the number of classifiers needed to accurately infer the true class of an unlabeled sample under both adversarial and stochastic assumptions. By exploiting a connection to the classical set cover problem, we produce a near-optimal scheme for designing such configurations of classifiers which recovers the well known one-vs.-one classification approach as a special case. Experiments with the MNIST and CIFAR-10 datasets demonstrate the favorable accuracy (compared to a centralized classifier) of our aggregation scheme applied to classifiers trained on subsets of the data. These results suggest a new way to automatically label data or adapt an existing set of local classifiers to larger-scale multiclass problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Surin Ahn (7 papers)
  2. Mert Pilanci (102 papers)
  3. Ayfer Ozgur (35 papers)

Summary

We haven't generated a summary for this paper yet.