Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distance-based Positive and Unlabeled Learning for Ranking

Published 20 May 2020 in cs.LG, cs.IR, and stat.ML | (2005.10700v3)

Abstract: Learning to rank -- producing a ranked list of items specific to a query and with respect to a set of supervisory items -- is a problem of general interest. The setting we consider is one in which no analytic description of what constitutes a good ranking is available. Instead, we have a collection of representations and supervisory information consisting of a (target item, interesting items set) pair. We demonstrate analytically, in simulation, and in real data examples that learning to rank via combining representations using an integer linear program is effective when the supervision is as light as "these few items are similar to your item of interest." While this nomination task is quite general, for specificity we present our methodology from the perspective of vertex nomination in graphs. The methodology described herein is model agnostic.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.