Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Characterization of Entropic Vectors at the Boundary of Almost Entropic Cones (2005.10526v1)

Published 21 May 2020 in cs.IT and math.IT

Abstract: The entropy region is a fundamental object in information theory. An outer bound for the entropy region is defined by a minimal set of Shannon-type inequalities called elemental inequalities also referred to as the Shannon region. This paper focuses on characterization of the entropic points at the boundary of the Shannon region for three random variables. The proper faces of the Shannon region form its boundary. We give new outer bounds for the entropy region in certain faces and show by explicit construction of distributions that the existing inner bounds for the entropy region in certain faces are not tight.

Citations (5)

Summary

We haven't generated a summary for this paper yet.