2000 character limit reached
Neural Network-based Constrained Optimal Coordination for Heterogeneous Uncertain Nonlinear Multi-agent Systems (2005.10498v2)
Published 21 May 2020 in math.OC, cs.SY, and eess.SY
Abstract: In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a private objective function and a steady-state constraint about its output. We develop a composite distributed controller for each agent by a combination of internal model and neural network. All agent outputs are proven to reach the constrained minimal point of the aggregate objective function with bounded residual errors irrespective of the unknown nonlinearities and external disturbances. Two examples are finally given to demonstrate the effectiveness of the algorithm.