Papers
Topics
Authors
Recent
2000 character limit reached

Monte Carlo Estimators for the Schatten p-norm of Symmetric Positive Semidefinite Matrices

Published 20 May 2020 in math.NA and cs.NA | (2005.10174v1)

Abstract: We present numerical methods for computing the Schatten $p$-norm of positive semi-definite matrices. Our motivation stems from uncertainty quantification and optimal experimental design for inverse problems, where the Schatten $p$-norm defines a design criterion known as the P-optimal criterion. Computing the Schatten $p$-norm of high-dimensional matrices is computationally expensive. We propose a matrix-free method to estimate the Schatten $p$-norm using a Monte Carlo estimator and derive convergence results and error estimates for the estimator. To efficiently compute the Schatten $p$-norm for non-integer and large values of $p$, we use an estimator using a Chebyshev polynomial approximation and extend our convergence and error analysis to this setting as well. We demonstrate the performance of our proposed estimators on several test matrices and through an application to optimal experimental design of a model inverse problem.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.