Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo Estimators for the Schatten p-norm of Symmetric Positive Semidefinite Matrices (2005.10174v1)

Published 20 May 2020 in math.NA and cs.NA

Abstract: We present numerical methods for computing the Schatten $p$-norm of positive semi-definite matrices. Our motivation stems from uncertainty quantification and optimal experimental design for inverse problems, where the Schatten $p$-norm defines a design criterion known as the P-optimal criterion. Computing the Schatten $p$-norm of high-dimensional matrices is computationally expensive. We propose a matrix-free method to estimate the Schatten $p$-norm using a Monte Carlo estimator and derive convergence results and error estimates for the estimator. To efficiently compute the Schatten $p$-norm for non-integer and large values of $p$, we use an estimator using a Chebyshev polynomial approximation and extend our convergence and error analysis to this setting as well. We demonstrate the performance of our proposed estimators on several test matrices and through an application to optimal experimental design of a model inverse problem.

Citations (8)

Summary

We haven't generated a summary for this paper yet.