2000 character limit reached
Deep learning classification of chest x-ray images (2005.09609v2)
Published 19 May 2020 in eess.IV and cs.LG
Abstract: We propose a deep learning based method for classification of commonly occurring pathologies in chest X-ray images. The vast number of publicly available chest X-ray images provides the data necessary for successfully employing deep learning methodologies to reduce the misdiagnosis of thoracic diseases. We applied our method to the classification of two example pathologies, pulmonary nodules and cardiomegaly, and we compared the performance of our method to three existing methods. The results show an improvement in AUC for detection of nodules and cardiomegaly compared to the existing methods.