Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Staying True to Your Word: (How) Can Attention Become Explanation? (2005.09379v1)

Published 19 May 2020 in cs.CL

Abstract: The attention mechanism has quickly become ubiquitous in NLP. In addition to improving performance of models, attention has been widely used as a glimpse into the inner workings of NLP models. The latter aspect has in the recent years become a common topic of discussion, most notably in work of Jain and Wallace, 2019; Wiegreffe and Pinter, 2019. With the shortcomings of using attention weights as a tool of transparency revealed, the attention mechanism has been stuck in a limbo without concrete proof when and whether it can be used as an explanation. In this paper, we provide an explanation as to why attention has seen rightful critique when used with recurrent networks in sequence classification tasks. We propose a remedy to these issues in the form of a word level objective and our findings give credibility for attention to provide faithful interpretations of recurrent models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Martin Tutek (10 papers)
  2. Jan Ć najder (24 papers)
Citations (26)